Druhy mechanických pohybů
Druhy mechanických pohybů
dělí se podle:
tvaru trajektorie = přímočaré a křivočaré
časové změny velikosti rychlosti = rovnoměrné a nerovnoměrné
Rovnoměrný přímočarý pohyb
– velikost a směr rychlosti se nemění
– rychlost v = konstantní
– vzorec: s=v.t (toto platí, jestliže to = 0, dráha so = 0)
– pokud v čase to = 0 bod urazil nenulovou dráhu, pak závislost dráhy a času vyjadřuje vztah: s=s0+v.t
Rovnoměrně zrychlený (zpomalený) přímočarý pohyb
– platí, že zrychlení a = konstantní
– vztah: v=a.t (platí, když se bod již pohybuje nenulovou počáteční rychlostí)
Dráha rovnoměrně zrychleného pohybu při nenulové počáteční rychlosti
– vztah: , v případě, že je počáteční rychlost v0 = 0, platí pro dráhu vztah – z toho plyne, že dráha při tomto pohybu je přímo úměrná druhé mocnině času
Rovnoměrně zpomalený pohyb
– vzorec: v=v0-at pro dráhu při počáteční rychlosti vo platí
Volný pád
– pohyb rovnoměrně zrychlený
– tíhové zrychlení g (obvykle má hodnotu m.s-2)
– vzorce: , v=g.t
Rovnoměrný pohyb hmotného bodu po kružnici
– velikost rychlosti se nemění, mění se směr rychlosti
– v = konstantní, rychlost trajektorie v však není konstantní
– velikost úhlu:
– jednotkou pro měření úhlů je radián (rad), 1 rad = 57o20´
– úhlová rychlost:
– oběžná doba bodu = perioda T
– počet oběhů za sekundu udává frekvence f, pro ni platí vztah
– jednotkou frekvence je hertz (Hz), 1 Hz = 1 s-1.
– další vztah pro úhlovou rychlost: